(9x-12)+(x^2-5x)=180

Simple and best practice solution for (9x-12)+(x^2-5x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x-12)+(x^2-5x)=180 equation:



(9x-12)+(x^2-5x)=180
We move all terms to the left:
(9x-12)+(x^2-5x)-(180)=0
We get rid of parentheses
x^2+9x-5x-12-180=0
We add all the numbers together, and all the variables
x^2+4x-192=0
a = 1; b = 4; c = -192;
Δ = b2-4ac
Δ = 42-4·1·(-192)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*1}=\frac{-32}{2} =-16 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*1}=\frac{24}{2} =12 $

See similar equations:

| 32t=-16t^2+32 | | Xx13+19=xx3+199 | | 25-5x-1=8x-7x | | 3/4-1/2x=8 | | t=-16t^2+32 | | 5+35x=29x+23 | | -5r-4=5r+6 | | 17j-15j=6 | | 3y-8=5y+16 | | 5a-15=2a+6 | | 5x+4-8x=-14 | | 10-2x=7+x | | -2-15h=-11h-3h-19 | | 0.25x+6.5=-0.25x-9.5 | | 2(5x-3)-4=3x+14 | | 4x-13x=-27 | | A-250)x5=1355 | | x^2+9x-197=0 | | x-6/9=x+9/4 | | 28+6x=8(x+2) | | 23-2x=5 | | -2n=-9+16 | | 10r-6=9+5r | | 3(-2x-8)=30 | | x+5x=73 | | x2+4x+4=0 | | 1/2x-7/8=-7/12 | | 19=3f+4 | | Xx13-209=x6-13 | | x^3+x^2+x+1=(x+1)3 | | 0.75×n=1 | | x^3+x^2+x+1=(x+1)^3 |

Equations solver categories